-->

آخر الأخبار

جاري التحميل ...

Condensateurs



1. Qu’est-ce qu’un condensateur ?


a) Expérience de mise en évidence :

1. Un électroscope est chargé négativement au moyen d'un bâton d'ébonite frotté avec de la fourrure. Les charges se répartissent sur le disque 1, la tige et l’aiguille.

Observations :  la tige et l’aiguille se repoussent  déviation de l’aiguille d’un angle α

2. On rapproche très près du disque 1 un disque 2 métallique relié à la terre.

Observation : l’angle α diminue 

b) Interprétation  

Quelques-unes des charges – ont quitté la tige et l’aiguille et l'aiguille pour s’accumuler sur le disque 1.

La charge – initiale du disque 1 a repoussé vers la terre quelques électrons du disque

2 : le disque 2 se charge positivement par influence.

La charge + du disque 2 attire des électrons supplémentaires sur le disque 1 qui lui repousse davantage de charges – du disque

2 vers la terre. 

Finalement le disque 1 est chargé fortement négativement et le disque 2 est chargé fortement positivement.

Les charges + et – des deux disques sont d’ailleurs égales en valeur absolue !



c) Conclusion 

Grâce à la présence du disque 2, une quantité de charge plus importante s’accumule sur le disque 1 (et donc aussi sur le disque 2).

L’assemblage des 2 disques avec l’isolant entre eux est appelé condensateur (de charges). 

d) Définitions

Un condensateur est formé par deux surfaces métalliques en regard, séparées par un isolant (= diélectrique). Les surfaces métalliques en regard sont appelées les armatures du condensateur. 

Schéma pour le condensateur dans un circuit électrique : 

e) Application pratique 

Le condensateur est utilisé dans tout genre de circuit électronique. Sa première raison d’utilisation est d'emmagasiner temporairement des charges électriques et donc de l’énergie électrique. De plus, les condensateurs jouent un rôle important dans les circuits de synchronisation électronique (radio, TV), dans les filtres électroniques de fréquences et dans les circuits de transmission de signaux.

Les condensateurs plans modernes se présentent sous différentes formes. Le plus commun est formé par deux feuilles d’aluminium séparées par une feuille de diélectrique (papier, mica, …), le tout enroulé en un petit cylindre et scellé.

2. Charge et décharge d’un condensateur. Etude expérimentale 

a) Dispositif expérimental 

L’interrupteur K peut être fermé soit en position 1 soit en position 2

A est un ampèremètre très sensible, présentant une caractéristique intéressante : lorsqu’il est parcouru par une impulsion de courant (courant de brève durée), la déviation maximale de l’aiguille est proportionnelle à la quantité de charge totale Q qui l’a traversé. 


b) Observations et interprétations 

1. Charge du condensateur 

Fermons K en 1 : l’aiguille de A dévie brièvement. Le pôle + du générateur attire quelques électrons de l’armature 1, les propulse vers le pôle – d’où ils sont repoussés vers l’armature 2. Cette circulation d’électrons donne lieu à une impulsion de courant indiquée par l'ampèremètre. Cette impulsion de courant fait apparaître des quantités de charge Q1 > 0 sur l'armature 1 et Q2 < 0 sur l'armature 2 du condensateur. On a évidemment: Q1 = Q2. 


La présence des charges est indiquée par l’existence d’une tension U aux bornes du condensateur. L’impulsion de courant s’arrête dès que U=U0: aucun courant ne circule plus dans le circuit. On dit alors que l’on a chargé le condensateur, sa « charge » vaut Q Q Q   1 2 .

Remarque :

La « charge Q » du condensateur est la valeur absolue de la charge qui s'accumule sur l’une de ses armatures. (La charge totale des 2 armatures est évidemment nulle !)

Ouvrons K : l’aiguille de A ne dévie pas. 

Aucun courant ne circule. Le condensateur reste chargé. Sa tension est toujours U=U0 et sa charge Q.

2. Décharge du condensateur 

Fermons K en 2 : l’aiguille de A dévie brièvement dans l’autre sens.

Le condensateur chargé est court-circuité. Les électrons de l’armature 2 circulent à travers le circuit pour compenser le défaut d’électrons sur l’armature 1. 

La circulation d’électrons s’arrête si les deux 2 armatures sont neutres, c.-à-d. si U = 0 et Q = 0.

Lorsqu’on relie les armatures d’un condensateur chargé par un conducteur, on décharge le condensateur. La tension à ses bornes ainsi que sa charge s’annulent. 

3. Relation entre la charge Q d’un condensateur et sa tension U 

a) Expérience 

Le fait qu’un condensateur est chargé est indiqué par l’existence d’une tension entre ses bornes. Plus la charge Q est élevée, plus la tension U est grande. Quand le condensateur n’est pas chargé, la tension U à ses bornes vaut 0 V.

Recherchons une relation entre la tension U aux bornes d’un condensateur et la charge Q accumulée. Pour ce faire, nous mesurons la charge accumulée pour différentes tensions U.

Le dispositif expérimental est celui de l'expérience du paragraphe précédent. La déviation maximale de l’aiguille de l'ampèremètre est une mesure de la charge Q qui a circulé dans le circuit lors de la charge ou de la décharge du condensateur. C’est la même charge que celle qui s’accumule sur les armatures du condensateur.

b) Tableau des mesures 

c) Conclusion 

La charge Q du condensateur est proportionnelle à la tension U entre ses armatures :

Q ~ U
Q C U (C est la constante de proportionnalité)

d) Mesures pour un autre condensateur

En répétant les mêmes mesures pour un autre condensateur, on constate : 

 e) Capacité C d'un condensateur

Ainsi, la constante de proportionnalité                        caractérise le condensateur
 

C est numériquement égal à la charge accumulée par le condensateur sous une tension de 1V.

* si C est grand : le condensateur accumule une forte charge sous 1 V

* si C est petit : le condensateur n’accumule qu’une faible charge sous 1 V. 

Voilà pourquoi C est appelé la capacité du condensateur.

f) Unité pour C 


 g) Conclusion finale: relation entre Q, U et C

Lorsqu’une tension U est appliquée aux bornes d’un condensateur, des charges Q > 0 et Q < 0 s’accumulent sur ses armatures. La charge Q du condensateur est numériquement égale au produit de sa capacité C par la tension électrique U


 4. Capacité C d’un condensateur plan

a) Facteurs dont dépend la capacité C 

1. Surface S commune des armatures en regard 

2. Distance d entre les armatures 

3. Nature du diélectrique entre les armatures 

b) Etude expérimentale de l'influence des 3 facteurs 

1. Le dispositif expérimental est toujours celui du paragraphe 2. Afin de doubler la surface d'un condensateur on branche un deuxième condensateur identique en parallèle avec le premier.

Observation : Pour une même tension U, la charge Q de l'ensemble des 2 condensateurs en parallèle est 2 fois plus grande.

Conclusion : La capacité est proportionnelle à la surface des armatures  C ~ S

2. On utilise un condensateur plan pour lequel la distance d des armatures est réglable. On charge le condensateur sous une tension U, déterminée à l'aide d'un voltmètre. Sa charge (inconnue) vaut alors Q. On diminue maintenant d de moitié alors que Q reste constant.

Observation : La tension U diminue également de moitié. 

3. On utilise le même condensateur que sous 2.. On charge le condensateur sous une tension U, déterminée à l'aide d'un voltmètre. Sa charge (inconnue) vaut alors Q. On intercale une plaque de verre/une plaque de plastique entre les armatures.

Observation : La tension U diminue.

Conclusion : C augmente selon la nature du diélectrique. 

c) Conclusion 

d) Interprétation 

En augmentant la surface S du condensateur, les charges ont plus de place sur les armatures et se repoussent moins. Ainsi le condensateur peut accumuler une charge Q plus grande pour une tension U donnée. Ainsi sa capacité C est plus élevée

En augmentant la distance d entre les armatures du condensateur pour une tension U donnée, les forces électrostatiques qu’exercent les charges de l’armature + sur les charges de l’armature – diminuent et la quantité de charge Q maintenue sur les armatures est plus petite. Ceci veut dire que la capacité C du condensateur a diminué.

Un diélectrique (isolant électrique) est constitué de dipôles électriques qui s’orientent selon le champ électrique dans lequel ils se trouvent (voir grains de semoule p 92). Ces dipôles contribuent au maintien des charges sur les armatures du condensateur. Ainsi pour une tension U donnée, le condensateur porte une charge Q plus grande et sa capacité C a augmenté. L’importance de cet effet dépend de la nature du diélectrique : les différents diélectriques ont des permittivités relatives différentes. 

Le champ de claquage est l’intensité du champ électrique pour lequel le diélectrique perd ses qualités d’isolant électrique. Il est alors parcouru par un courant violent, une étincelle se produit et le condensateur est en général « grillé »

5. Énergie emmagasinée par un condensateur 

C’est l’énergie potentielle électrique Ep élect des charges stockées sur les armatures du condensateur.

a) Le condensateur est chargé progressivement 

Pour charger le condensateur, un générateur amène progressivement des charges sur A et B. Ceci veut dire qu’il propulse en fait des électrons de A vers B ! On décompose ce processus en n pas : n charges très petites, notées dq, sont amenées sur A (n très grand).

b) Travail nécessaire dW pour propulser une charge infiniment petite dq de l’armature B sur l’armature A

On considère le condensateur chargé sous la tension uAB. Sa charge vaut alors q = CuAB. A est chargé positivement, B négativement.

Une charge supplémentaire dq > 0 est propulsée (à vitesse constante) de l’armature B sur l’armature A à travers le générateur. La force nécessaire sur dq est opposée et égale à la force électrique sur dq, exercée par les charges q et q déjà accumulées sur les armatures A et B. Le travail (très petit) de la force électrique sur dq s’écrit : 


c) Energie potentielle électrique dEp élect d’une charge infiniment petite dq déplacée de B vers A

Elle est égale au travail de la force extérieure nécessaire au déplacement de la charge !

d) Energie potentielle totale des charges infiniment petites amenées successivement sur les armatures

4. Le générateur amène une charge dq supplémentaire sous la tension u3 > u2 etc. 

L'énergie électrique Ep élect totale emmagasinée par le condensateur est la somme de toutes les énergies potentielles électriques dEp élect de toutes les charges dq amenées sur le condensateur !

Comme dq est infiniment petit, la largeur des rectangles tend vers zéro, et la somme des aires tend vers la surface délimitée par la droite


التعليقات



إذا أعجبك محتوى مدونتنا نتمنى البقاء على تواصل دائم ، فقط قم بإدخال بريدك الإلكتروني للإشتراك في بريد المدونة السريع ليصلك جديد المدونة أولاً بأول ، كما يمكنك إرسال رساله بالضغط على الزر المجاور ...

إتصل بنا

زوار المدونة

احصاءات المدونة

جميع الحقوق محفوظة

Electricité industriel

2016